Indian Statistical Institute Mid-Semestral Examination 2007-2008 M.Math I Year Algebra Date:10/03/2008 Total Marks : 100 Instructor : N S N Sastry

Time: 3 hrs

Answer all Questions. Your answers should be logically complete.

- 1. Let R be a commutative ring with 1; P_1, \dots, P_n be ideals in R such that R/P_i is a Noetherian ring for $i = i, \dots, n$. Assume that $\bigcap_i^n P_i = \{0\}$. Show that $R[X_1, \dots, X_m]$ is Noetherian for all $m \ge 1$. [8 + 12]
- 2. Let R be a commutative ring with 1 and A be an ideal in R. Let M be a finitely generated R-module such that AM=M. Show that there exists an element r in R such that rM = 0 and $1 r \in A$. [15]
- 3. Define a primary R-module associated with a prime ideal P of R. If A_1, \dots, A_n are primary R-modules associated with P, then so is their intersection $A_1 \cap \dots \cap A_n$. [3+12]
- 4. Define the R-module $M \bigotimes_R N$ if M and N are R-modules. If M,N and N' are R-modules, then show that $(M \bigotimes_R N) \bigotimes_R N'$ is isomorphic to $M \bigotimes_R (N \bigotimes_R N')$ as R-modules. [15]
- 5. Let k be an algebraically closed field. Along with relavent definitions, prove that there exists an inclusion reversing bijective correspondence between the radical ideals of $k[X_1, \dots, X_n]$ and the closed algebraic subsets of k^n . [20]
- 6. (a) If A,B and P are ideals in a ring R with $AB \subseteq P$ and P a prime ideal of R, then show that either $A \subseteq P$ or $B \subseteq P$. [5]

(b) Define the localization R_P of a ring R and the localization M_P of an R-module M at a prime ideal P of R. Show that M_P and $M \bigotimes_R R_P$ are isomorphic as R_P -module. [10]